Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Hepatol Commun ; 6(10): 2765-2780, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866568

RESUMO

Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.


Assuntos
Disbiose , Metabolismo dos Lipídeos , Aciltransferases/genética , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares , Coenzima A/metabolismo , Glucose , Humanos , Hiperfagia , Metabolismo dos Lipídeos/genética , Lipídeos , Camundongos , Taurina , Vitaminas
2.
Nat Commun ; 13(1): 3226, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680875

RESUMO

Ultra-long-acting integrase strand transfer inhibitors were created by screening a library of monomeric and dimeric dolutegravir (DTG) prodrug nanoformulations. This led to an 18-carbon chain modified ester prodrug nanocrystal (coined NM2DTG) with the potential to sustain yearly dosing. Here, we show that the physiochemical and pharmacokinetic (PK) formulation properties facilitate slow drug release from tissue macrophage depot stores at the muscle injection site and adjacent lymphoid tissues following single parenteral injection. Significant plasma drug levels are recorded up to a year following injection. Tissue sites for prodrug hydrolysis are dependent on nanocrystal dissolution and prodrug release, drug-depot volume, perfusion, and cell-tissue pH. Each affect an extended NM2DTG apparent half-life recorded by PK parameters. The NM2DTG product can impact therapeutic adherence, tolerability, and access of a widely used integrase inhibitor in both resource limited and rich settings to reduce HIV-1 transmission and achieve optimal treatment outcomes.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Pró-Fármacos , Infecções por HIV/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis , Humanos , Oxazinas/uso terapêutico , Piperazinas , Pró-Fármacos/farmacologia , Piridonas/uso terapêutico
3.
Lipids Health Dis ; 21(1): 46, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614477

RESUMO

BACKGROUND: Hepatocyte nuclear factor 4α (HNF4α) and glucocorticoid receptor (GR), master regulators of liver metabolism, are down-regulated in fatty liver diseases. The present study aimed to elucidate the role of down-regulation of HNF4α and GR in fatty liver and hyperlipidemia. METHODS: Adult mice with liver-specific heterozygote (HET) and knockout (KO) of HNF4α or GR were fed a high-fat-high-sugar diet (HFHS) for 15 days. Alterations in hepatic and circulating lipids were determined with analytical kits, and changes in hepatic mRNA and protein expression in these mice were quantified by real-time PCR and Western blotting. Serum and hepatic levels of bile acids were quantified by LC-MS/MS. The roles of HNF4α and GR in regulating hepatic gene expression were determined using luciferase reporter assays. RESULTS: Compared to HFHS-fed wildtype mice, HNF4α HET mice had down-regulation of lipid catabolic genes, induction of lipogenic genes, and increased hepatic and blood levels of lipids, whereas HNF4α KO mice had fatty liver but mild hypolipidemia, down-regulation of lipid-efflux genes, and induction of genes for uptake, synthesis, and storage of lipids. Serum levels of chenodeoxycholic acid and deoxycholic acid tended to be decreased in the HNF4α HET mice but dramatically increased in the HNF4α KO mice, which was associated with marked down-regulation of cytochrome P450 7a1, the rate-limiting enzyme for bile acid synthesis. Hepatic mRNA and protein expression of sterol-regulatory-element-binding protein-1 (SREBP-1), a master lipogenic regulator, was induced in HFHS-fed HNF4α HET mice. In reporter assays, HNF4α cooperated with the corepressor small heterodimer partner to potently inhibit the transactivation of mouse and human SREBP-1C promoter by liver X receptor. Hepatic nuclear GR proteins tended to be decreased in the HNF4α KO mice. HFHS-fed mice with liver-specific KO of GR had increased hepatic lipids and induction of SREBP-1C and PPARγ, which was associated with a marked decrease in hepatic levels of HNF4α proteins in these mice. In reporter assays, GR and HNF4α synergistically/additively induced lipid catabolic genes. CONCLUSIONS: induction of lipid catabolic genes and suppression of lipogenic genes by HNF4α and GR may mediate the early resistance to HFHS-induced fatty liver and hyperlipidemia.


Assuntos
Gorduras na Dieta , Açúcares da Dieta , Fator 4 Nuclear de Hepatócito , Metabolismo dos Lipídeos , Receptores de Glucocorticoides , Animais , Cromatografia Líquida , Gorduras na Dieta/metabolismo , Açúcares da Dieta/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores Nucleares de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Espectrometria de Massas em Tandem
4.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
5.
Int J Hepatol ; 2022: 5473752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402050

RESUMO

Hepatobiliary diseases and their complications cause the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues, which may exacerbate the underlying condition and lead to unfavorable prognosis. To develop and validate prognostic biomarkers for the prediction of complications of cholestatic liver disease based on urinary BA indices, liquid chromatography-tandem mass spectrometry was used to analyze urine samples from 257 patients with cholestatic liver diseases during a 7-year follow-up period. The urinary BA profile and non-BA parameters were monitored, and logistic regression models were used to predict the prognosis of hepatobiliary disease-related complications. Urinary BA indices were applied to quantify the composition, metabolism, hydrophilicity, and toxicity of the BA profile. We have developed and validated the bile-acid liver disease complication (BALDC) model based on BA indices using logistic regression model, to predict the prognosis of cholestatic liver disease complications including ascites. The mixed BA and non-BA model was the most accurate and provided higher area under the receiver operating characteristic (ROC) and smaller akaike information criterion (AIC) values compared to both non-BA and MELD (models for end stage liver disease) models. Therefore, the mixed BA and non-BA model could be used to predict the development of ascites in patients diagnosed with liver disease at early stages of intervention. This will help physicians to make a better decision when treating hepatobiliary disease-related ascites.

6.
Anal Chim Acta ; 1198: 339512, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35190119

RESUMO

There are several challenges associated with LC-MS/MS bioanalytical method development and validation. Low and variable recovery of some analytes, especially the more hydrophobic ones, is often challenging. Analytes can be lost to various extents throughout the process of sample collection, storage, before, during, and/or after sample preparation and analysis. The calculation of overall extraction recovery can detect problems of low recovery during sample preparation but does not identify the source(s) of analyte losses. Low overall analyte recovery is the net result of losses that can happen for multiple reasons at all steps of sample preparation and analysis. Therefore, identifying the source(s) of analyte loss during sample preparation can help guide the optimization the bioanalysis conditions to minimize these losses. In this article we propose a practical protocol to systematically identify and quantify the sources of low analyte recovery. This allows the proper choice of strategies to optimize the relevant bioanalytical conditions to minimize analyte losses and improve overall recovery.


Assuntos
Manejo de Espécimes , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
7.
Noncoding RNA ; 8(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35076584

RESUMO

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3'-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.

8.
Nat Commun ; 12(1): 5458, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531390

RESUMO

Treatment and prevention of human immunodeficiency virus type one (HIV-1) infection was transformed through widespread use of antiretroviral therapy (ART). However, ART has limitations in requiring life-long daily adherence. Such limitations have led to the creation of long-acting (LA) ART. While nucleoside reverse transcriptase inhibitors (NRTI) remain the ART backbone, to the best of our knowledge, none have been converted into LA agents. To these ends, we transformed tenofovir (TFV) into LA surfactant stabilized aqueous prodrug nanocrystals (referred to as NM1TFV and NM2TFV), enhancing intracellular drug uptake and retention. A single intramuscular injection of NM1TFV, NM2TFV, or a nanoformulated tenofovir alafenamide (NTAF) at 75 mg/kg TFV equivalents to Sprague Dawley rats sustains active TFV-diphosphate (TFV-DP) levels ≥ four times the 90% effective dose for two months. NM1TFV, NM2TFV and NTAF elicit TFV-DP levels of 11,276, 1,651, and 397 fmol/g in rectal tissue, respectively. These results are a significant step towards a LA TFV ProTide.


Assuntos
Adenina/análogos & derivados , Alanina/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Organofosfatos/farmacologia , Pró-Fármacos/farmacologia , Tenofovir/análogos & derivados , Tenofovir/farmacologia , Adenina/química , Adenina/farmacocinética , Adenina/farmacologia , Alanina/química , Alanina/farmacocinética , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Estabilidade de Medicamentos , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Masculino , Nanopartículas/química , Organofosfatos/química , Organofosfatos/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos Sprague-Dawley , Tenofovir/química , Tenofovir/farmacocinética , Equivalência Terapêutica
9.
RSC Med Chem ; 12(8): 1366-1373, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34458739

RESUMO

The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.

10.
J Antimicrob Chemother ; 76(10): 2651-2658, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34312680

RESUMO

BACKGROUND: Multiple tissue reservoirs are established soon after HIV infection, and some tissues may also be pharmacological sanctuaries. Parenteral administration of antiretroviral (ARV) drugs for treatment and prevention of HIV infection is an active area of drug development. The influence of route of administration on ARV tissue pharmacokinetics is not known. OBJECTIVES: To investigate ARV pharmacokinetics in lymphatic and select non-lymphatic tissues (e.g. brain and testes) after intramuscular and subcutaneous administration compared with oral in BALB/c mice. METHODS: Tissue concentrations of cobicistat, efavirenz, elvitegravir, maraviroc, rilpivirine, tenofovir alafenamide and tenofovir disoproxil fumarate were determined. The tissue penetration ratio (TPR) was the primary measure for comparison; a change in TPR arises from factors affecting tissue distribution controlling for changes in systemic bioavailability. RESULTS: Intramuscular and subcutaneous delivery increased TPRs in the lymph node and spleen for 27 of 28 (96%) drug administration events. Decreased TPRs, however, were found in some tissues such as the brain and testes. CONCLUSIONS: These results demonstrate a change in route of drug administration from oral to intramuscular or subcutaneous can change tissue uptake. This has implications for HIV pharmacotherapy. For example, HIV persists in lymphoid tissues despite long-term oral ARV therapy, and low ARV concentrations have been found in lymphoid tissues. The improved ARV lymphatic tissue bioavailability with intramuscular and subcutaneous administration allows future studies to investigate these routes of drug administration as a therapeutic manoeuvre to limit viral persistence and eliminate viral sanctuaries in the lymphatic tissues, which is a prerequisite for eradication of HIV.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Preparações Farmacêuticas , Animais , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Tecido Linfoide , Camundongos , Camundongos Endogâmicos BALB C
11.
Nat Commun ; 12(1): 3453, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103484

RESUMO

A once every eight-week cabotegravir (CAB) long-acting parenteral is more effective than daily oral emtricitabine and tenofovir disoproxil fumarate in preventing human immunodeficiency virus type one (HIV-1) transmission. Extending CAB dosing to a yearly injectable advances efforts for the elimination of viral transmission. Here we report rigor, reproducibility and mechanistic insights for a year-long CAB injectable. Pharmacokinetic (PK) profiles of this nanoformulated CAB prodrug (NM2CAB) are affirmed at three independent research laboratories. PK profiles in mice and rats show plasma CAB levels at or above the protein-adjusted 90% inhibitory concentration for a year after a single dose. Sustained native and prodrug concentrations are at the muscle injection site and in lymphoid tissues. The results parallel NM2CAB uptake and retention in human macrophages. NM2CAB nanocrystals are stable in blood and tissue homogenates. The long apparent drug half-life follows pH-dependent prodrug hydrolysis upon slow prodrug nanocrystal dissolution and absorption. In contrast, solubilized prodrug is hydrolyzed in hours in plasma and tissues from multiple mammalian species. No toxicities are observed in animals. These results affirm the pharmacological properties and extended apparent half-life for a nanoformulated CAB prodrug. The report serves to support the mechanistic design for drug formulation safety, rigor and reproducibility.


Assuntos
Liberação Controlada de Fármacos , Lipídeos/química , Nanopartículas/química , Pró-Fármacos/farmacologia , Piridonas/farmacocinética , Animais , Composição de Medicamentos , Endocitose , Humanos , Cinética , Masculino , Camundongos Endogâmicos BALB C , Piridonas/administração & dosagem , Piridonas/sangue , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Distribuição Tecidual
12.
World J Hepatol ; 13(5): 543-556, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34131469

RESUMO

BACKGROUND: Cholestatic liver diseases are characterized by an accumulation of toxic bile acids (BA) in the liver, blood and other tissues which lead to progressive liver injury and poor prognosis in patients. AIM: To discover and validate prognostic biomarkers of cholestatic liver diseases based on the urinary BA profile. METHODS: We analyzed urine samples by liquid chromatography-tandem mass spectrometry and investigated the use of the urinary BA profile to develop survival models that can predict the prognosis of hepatobiliary diseases. The urinary BA profile, a set of non-BA parameters, and the adverse events of liver transplant and/or death were monitored in 257 patients with cholestatic liver diseases for up to 7 years. The BA profile was characterized by calculating BA indices, which quantify the composition, metabolism, hydrophilicity, formation of secondary BA, and toxicity of the BA profile. We have developed and validated the bile-acid score (BAS) model (a survival model based on BA indices) to predict the prognosis of cholestatic liver diseases. RESULTS: We have developed and validated a survival model based on BA (the BAS model) indices to predict the prognosis of cholestatic liver diseases. Our results demonstrate that the BAS model is more accurate and results in higher true-positive and true-negative prediction of death compared to both non-BAS and model for end-stage liver disease (MELD) models. Both 5- and 3-year survival probabilities markedly decreased as a function of BAS. Moreover, patients with high BAS had a 4-fold higher rate of death and lived for an average of 11 mo shorter than subjects with low BAS. The increased risk of death with high vs low BAS was also 2-4-fold higher and the shortening of lifespan was 6-7-mo lower compared to MELD or non-BAS. Similarly, we have shown the use of BAS to predict the survival of patients with and without liver transplant (LT). Therefore, BAS could be used to define the most seriously ill patients, who need earlier intervention such as LT. This will help provide guidance for timely care for liver patients. CONCLUSION: The BAS model is more accurate than MELD and non-BAS models in predicting the prognosis of cholestatic liver diseases.

13.
World J Hepatol ; 13(4): 433-455, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33959226

RESUMO

BACKGROUND: Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis. AIM: To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile. METHODS: We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases. RESULTS: Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases. CONCLUSION: BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.

14.
Nanomedicine ; 33: 102363, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545405

RESUMO

RNA interference molecules have tremendous potential for cancer therapy but are limited by insufficient potency after i.v. administration. We previously found that Chol-DsiRNA polyplexes formed between cholesterol-modified dicer-substrate siRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase the activity of Chol-DsiRNA against a stably expressed reporter mRNA in primary murine syngeneic breast tumors after daily i.v. dosing. Here, we provide a more thorough preliminary preclinical study of Chol-DsiRNA polyplexes against the therapeutically relevant target protein, STAT3. We found that Chol-DsiSTAT3 polyplexes greatly increase plasma exposure, distribution, potency, and therapeutic activity of Chol-DsiSTAT3 in primary murine syngeneic 4T1 breast tumors after i.v. administration. Furthermore, inactive Chol-DsiCTRL polyplexes are well tolerated by healthy female BALB/c mice after chronic i.v. administration at 50 mg Chol-DsiCTRL/kg over 28 days. Thus, Chol-DsiRNA polyplexes may be a good candidate for Phase I clinical trials to improve the treatment of breast cancer and other solid tumors.


Assuntos
Neoplasias da Mama/terapia , RNA Helicases DEAD-box/genética , Polietilenoglicóis/química , Polilisina/análogos & derivados , RNA Interferente Pequeno/química , Terapêutica com RNAi/métodos , Ribonuclease III/genética , Animais , Linhagem Celular Tumoral , Colesterol/química , Feminino , Técnicas de Transferência de Genes , Humanos , Camundongos Endogâmicos BALB C , Micelas , Terapia de Alvo Molecular , Polilisina/química , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Distribuição Tecidual
15.
Transl Res ; 227: 1-14, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553670

RESUMO

Alcohol-associated liver disease is accompanied by dysregulation of bile acid metabolism and gut barrier dysfunction. Peroxisome proliferator-activated receptor-delta (PPARδ) agonists are key metabolic regulators and have anti-inflammatory properties. Here, we evaluated the effect of the selective PPAR-delta agonist seladelpar (MBX-8025) on gut barrier function and bile acid metabolism in a mouse model of ethanol-induced liver disease. Wild type C57BL/6 mice were fed LieberDeCarli diet containing 0%-36% ethanol (caloric) for 8 weeks followed by a single binge of ethanol (5 g/kg). Pair fed mice received an isocaloric liquid diet as control. MBX-8025 (10 mg/kg/d) or vehicle were added to the liquid diet during the entire feeding period (prevention), or during the last 4 weeks of Lieber DeCarli diet feeding (intervention). In both prevention and intervention trials, MBX-8025 protected mice from ethanol-induced liver disease, characterized by lower serum alanine aminotransferase (ALT) levels, hepatic triglycerides, and inflammation. Chronic ethanol intake disrupted bile acid metabolism by increasing the total bile acid pool and serum bile acids. MBX-8025 reduced serum total and secondary bile acids, and the total bile acid pool as compared with vehicle treatment in both prevention and intervention trials. MBX-8025 restored ethanol-induced gut dysbiosis and gut barrier dysfunction. Data from this study demonstrates that seladelpar prevents and treats ethanol-induced liver damage in mice by direct PPARδ agonism in both the liver and the intestine.


Assuntos
Acetatos/farmacologia , Ácidos e Sais Biliares/metabolismo , Etanol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase , Hepatopatias Alcoólicas/prevenção & controle , PPAR delta/agonistas , Acetatos/uso terapêutico , Animais , Feminino , Hepatopatias Alcoólicas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
16.
ACS Med Chem Lett ; 11(10): 1848-1854, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062163

RESUMO

Herein we report the synthesis, SAR, and biological evaluation of a series of 1H-pyrrolo[2,3-b]pyridine-2-carboxamide derivatives as selective and potent PDE4B inhibitors. Compound 11h is a PDE4B preferring inhibitor and exhibited acceptable in vitro ADME and significantly inhibited TNF-α release from macrophages exposed to pro-inflammatory stimuli (i.e., lipopolysaccharide and the synthetic bacterial lipopeptide Pam3Cys). In addition, 11h was selective against a panel of CNS receptors and represents an excellent lead for further optimization and preclinical testing in the setting of CNS diseases.

17.
Curr Dev Nutr ; 4(9): nzaa131, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908958

RESUMO

BACKGROUND: The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES: We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS: Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS: Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS: The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.

18.
Nanomedicine ; 29: 102266, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679269

RESUMO

HPMA copolymer-based dexamethasone prodrug (P-Dex) and PEG-based dexamethasone prodrug (PEG-Dex, ZSJ-0228) were previously found to passively target the inflamed kidney and provide potent and sustained resolution of nephritis in NZB/WF1 lupus-prone mice. While both prodrug nanomedicines effectively ameliorate lupus nephritis, they have demonstrated distinctively different safety profiles. To explore the underlining mechanisms of these differences, we conducted a head-to-head comparative PK/BD study of P-Dex and PEG-Dex on NZB/WF1 mice. Overall, the systemic organ/tissue exposures to P-Dex and Dex released from P-Dex were found to be significantly higher than those of PEG-Dex. The high prodrug concentrations were sustained in kidney for only 24 h, which cannot explain their lasting therapeutic efficacy (>1 month). P-Dex showed sustained presence in liver, spleen and adrenal gland, while the presence of PEG-Dex in these organs was transient. This difference in PK/BD profiles may explain PEG-Dex' superior safety than P-Dex.


Assuntos
Dexametasona/química , Nefrite Lúpica/tratamento farmacológico , Nanopartículas/química , Polímeros/farmacologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia , Animais , Dexametasona/farmacologia , Modelos Animais de Doenças , Humanos , Rim/efeitos dos fármacos , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos NZB , Nanomedicina , Polímeros/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Baço/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
19.
ACS Chem Neurosci ; 11(15): 2231-2242, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32609488

RESUMO

Cocaine addiction remains a major public concern throughout the world especially in developed countries. In the last three decades, significant achievements have led to a greater understanding of the signaling pathways involved in the development of cocaine addiction; however, there are no FDA-approved treatments available to reverse or block this brain disease due to either the unsatisfactory therapeutic efficacy or severe side effects. Previous studies have demonstrated that chronic exposure to cocaine elevates levels of cyclic AMP (cAMP) as a neuroadaptative response in reward-related brain regions. Phosphodiesterase 4 (PDE4) inhibitors, which elevate cAMP levels, have been shown to block cocaine-mediated behavioral changes related to psychoactive and reinforcing properties. Unfortunately, previously studied PDE4 inhibitors induce severe side-effects, which limit their clinical usage. In this study, we identified a novel PDE4B inhibitor, KVA-D-88, with an improved selectivity profile compared to previous compounds (e.g., rolipram). Pharmacokinetic studies have shown that this compound is brain penetrant and preferably acts on PDE4B compared to PDE4D in vitro, alluding to less unwanted side effects with KVA-D-88 in vivo. Interestingly, pretreatment with KVA-D-88 significantly inhibited cocaine-induced hyperlocomotor activity. In cocaine self-administering mice with differential schedules, KVA-D-88 strikingly decreased the number of active nose-pokes and cocaine infusions and reduced the break point. Taken together, our findings demonstrate that this novel PDE4 inhibitor, KVA-D-88, could inhibit cocaine-mediated rewarding effects implying its potential clinical usage for cocaine addiction.


Assuntos
Cocaína , Inibidores da Fosfodiesterase 4 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Camundongos , Inibidores da Fosfodiesterase 4/farmacologia , Recompensa , Rolipram/farmacologia
20.
Nat Mater ; 19(8): 910-920, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341511

RESUMO

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.


Assuntos
Antirretrovirais/metabolismo , Nanoestruturas/química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Piridonas/metabolismo , Animais , Antirretrovirais/farmacologia , Antirretrovirais/toxicidade , Transporte Biológico , Preparações de Ação Retardada , Composição de Medicamentos , Interações Medicamentosas , Estabilidade de Medicamentos , Camundongos , Piridonas/farmacologia , Piridonas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...